How Trees and Urban Forest Systems Affect Stormwater Runoff

Eric Kuehler
Science Delivery/Technology Specialist
USDA Forest Service
ekuehler@fs.fed.us
Objectives

• Current research
 • Retention/detention
 • Rainfall intensity reduction
 • transpiration

• Co-benefits of urban trees
• UF management strategies to maximize stormwater benefits
• Using trees to meet stormwater credits
Forests and the Water Cycle:

- Infiltration
- Interception
- Throughfall
- Soil Water Storage
- Subsurface Flow
- Groundwater
- Evapotranspiration
- Surface Runoff
- Evaporation
Typical Urban Development

- Remove tree canopy cover
- Remove ground cover
 - Vegetative
 - Detritus (mulch)
- Remove permeable top soil
 - Leaving dense subsoil
- Disturb/compact/pave over remaining soil
- Grass sod over subsoil

Image courtesy of Google Earth
Research Basis for Forest Systems and Stormwater Mitigation

Forest – Flat River Tributary

- Size: 2.95 km²
- Forest/Open Space: 99%
- Impervious: 1%
- Peak flow rate: 5.8 (mm/day) 76.6 UR > 13x
- Storm flow volume: 7.1 (mm/day) 77.9 UR > 11x
- Mean ET: 77% 58%

Urban – Pigeon House Creek

- Size: 0.70 km²
- Forest/Open Space: 56%
- Impervious: 44%

Boggs & Sun (2011) Urbanization alters watershed hydrology in the Piedmont of North Carolina, Ecohydrology, 4, 256-264
Can Cities Be Designed to Mimic Forested Systems?

• Layered forest structure
 • Over-story
 • Mid-story
 • Groundcover (mulch or veg)
 • Where appropriate

• Provide more rooting volume
 • Permeable soils / macro-pores

• Store runoff belowground
 • GSI / Greenspace conservation
 • Rocks?
Various Ways Urban Forest Systems Impact Rainfall and Stormwater

1. Rainfall Retention
2. Stemflow
3. Throughfall
4. Infiltration/percolation
5. Transpiration
Tree Canopy Retains Rainfall

• ~20% annual retention under canopy
 • 14 – 61% range depending on region
 • Depends on volume and intensity

• Canopy holds first 2-4mm of rainfall
 • Xiao et al. (2000); Livesley et al. (2014)
 • 1 ac @ 25% cover = 71-143 ft³ / event
 • 531 – 1070 gallons

• More leaf area = more retention
 • Larger trees
 • Evergreen trees
Tree Canopy Retains Rainfall

• Leaf area drives rainfall retention
• Static storage (Keim et al., 2006)
 • Water held after rain event ends
 • ~0.2 mm per m^2 leaf area
• Dynamic storage
 • Temporary water storage during rain event
 • Broadleaf = 0.77 mm
 • Coniferous = 1.25 mm
 • Xiao and McPherson (2016)
• Large trees can have hundreds of m^2 of leaf area
Static vs. Dynamic Storage
Keim et al. (2006)
Tree Canopy Retains Rainfall

- Hackberry example
 - 14” DBH
 - 50’ HT
 - 35’ crown width
 - Leaf area ~ 7000 ft\(^2\)
- Static storage = ~34 gallons
 - @ 0.2mm/m\(^2\)
- Dynamic storage = ~ 132 gallons
 - @ 0.77mm/m\(^2\)
Tree Canopy Retains Rainfall

- Entire urban forest example
 - City of Atlanta
- i-Tree Eco project
 - 443 1/10th acre plots
 - Randomly located around city
 - 2013 meteorological data
- Estimated leaf area = 235 mi²
- Avoided runoff = 94.1 million ft³
 - 704 million gallons
 - 3.3% of annual rainfall
Stemflow

- Slows runoff rate
- Funnels stormwater to base of tree
- Encourages infiltration
- Leaf-on season
 - 3-8% of rain falling on tree canopy
 - Leaves encourage throughfall
- Leaf-off season
 - 9-15% of rain falling on canopy
 - Typical winter rainfall intensity less than summer intensity

Credit: City of Kamloops, BC, Canada
To Maximize Stemflow (and Minimize Runoff)

- Per Schooling & Carlyle-Moses (2015)
- Provide sufficient infiltration capacity at base of tree
- Select larger canopy trees
- Select smooth(er) bark trees
- Select trees with co-leaders or more acute branch angles
 - What are the trade-offs?
- Encourage canopy cover over impervious surfaces
Tree Canopy Temporarily Detains Rainfall

- Delayed throughfall via dynamic storage
 - Depends on storm intensity
 - Crown surface area
- From 10 min. to > 3 hours
 - Aston (1979) in Australia
 - Asadian and Weiler (2009) in Vancouver, BC
- Canopy cover increases lag time
 - Keim (2003)
 - Livesley et al (2014)
Canopy Cover Reduces Rainfall Intensity

- 15%-21% reduction in deciduous forest
 - Trimble and Weitzman (1954)
- 21%-52% reduction in Oregon
 - Keim and Skaugset (2003)
- May be greater for urban trees
- Canopy cover acts as volume control measure
 - Increases BMP efficiency?
Infiltration and Percolation

• Soils store, delay, and filter
• Urban soils typically compacted
• Tree roots penetrate compacted soil
• 69 – 354% greater water infiltration under tree canopy
 • Zadeh & Sepaskhah (2016)
• Infiltration rates increased by 800% in clay loam soils under canopy
• Root mass is credited with higher infiltration
Transpiration Allows More Storage in Soil

• Highly dependent on environmental factors and species
• ~1.5 mm/day/m² canopy cover
 • Chen et al. (2011)
 • Wang et al. (2012)
• 0.3 – 2.6 mm/day/m² leaf area
 • Kjelgren & Montague (1998)
 • Fair et al. (2012)
• 7000 ft² leaf area = 7 - 60 ft³/day
 • @ 0.3-2.6mm/m²/day
 • 52 - 446 gallons/day
Conclusion

• Tree canopy retains rainfall
 • ~20% annual rainfall under canopy
 • First 2-4 mm of rainfall
 • 0.2 mm per m² of leaf area

• Stemflow
 • Directs up to 15% of interception to soil

• Canopy cover reduces rainfall intensity
 • Deciduous canopy 15 – 21%
 • Coniferous canopy 21 – 52%

• Trees increase infiltration under canopy
 • Up to 350%

• Trees transpire 50 to 450 gallons/day
 • Species and microclimate dependent
Co-benefits of Urban Forest Systems (Triple Bottom Line)

- Economic
 - Energy conservation
 - \uparrowCC 10%, \downarrowT 1.2° C, \downarrowe-use ~15%
 - Huang et al. 1987
 - Increased property value (~5%)

- Social
 - Positive relationship with human health
 - http://www.naturewithin.info/urban.html

- Environmental
 - Air pollution removal/avoidance
 - i-Tree tools to quantify
 - www.itreetools.org
Urban Forest Management Strategies to Maximize Stormwater Mitigation

• Layered structure mimics forest systems (reduce/delay runoff)
 • Over story canopy
 • Dominant species
 • Mid-story canopy
 • Shade tolerant species
 • Ground cover (veg/mulch)

• Provide adequate rooting volume for growth and health
 • Suspended pavement systems
 • Gravel under pavement?
Retrofitting Trees in Extra-Urban Settings

Growing trees in gravel beds
Using Trees to Meet Stormwater Credit

<table>
<thead>
<tr>
<th>Location</th>
<th>Document Title</th>
<th>Details</th>
</tr>
</thead>
</table>
| Portland, OR | 2004 Stormwater Management Manual | • Subtract Impervious Cover under trees within 25 feet of impervious cover that meets certain criteria
 • Existing Tree = 50% of Existing Canopy, New Trees = 100 to 200 ft² of impervious cover |
| Indianapolis, IN | 2007 Stormwater Green Infrastructure Supplemental Document | • Credits for new or exiting tree canopy within 20 feet of impervious surfaces.
 • 1 tree = 100 ft² of Impervious Cover |
| Pine Lake, GA | 2003 Ordinance | • Trees count towards site runoff requirements
 • Trees = 10 to 20 gallons/in DBH |
| Minnesota | Volume, TSS, Phosphorus Credit | • Based on interception, evaporation, and infiltration
 • Example: Mature Red Maple with infiltration area = 340 cf |
| Philadelphia, PA | 2011 Stormwater Manual | • Reduction in impervious area |
| Washington, DC | 2013 Guidebook | • Trees receive retention value
 • Preserved Trees = 20 ft³; New Trees = 10 ft³ |
How Trees and Urban Forest Systems Really Affect Stormwater Runoff

Eric Kuehler
Science Delivery/Technology Specialist
USDA Forest Service
ekuehler@fs.fed.us